

Identifying Reasoning *Teacher key*

1. Choose the best reasoning to complete the argument below.

- **Observation** Two light tan mice had a baby mouse pup with dark brown fur.
- **Question** How did light parents produce a pup with dark fur?
- Claim In at least one of the parents' gametes (reproductive cells), mutation of the MC1R gene generated a new allele that caused the mouse pup to have dark fur.
- Genetic testing showed that the two light-colored mice are definitely the parents of the dark-colored pup.
 - DNA sequencing revealed that the mouse pup has an allele of the MC1R gene that causes more black pigment to be made in the fur.
 - Neither parent has a copy of this dark MC1R allele.

Which of the following statements provides the **best reasoning** to justify why the evidence supports the claim?

- **a.** Mutation is a natural process that generates genetic variation.
- **b.** DNA is passed from parents to offspring so that each offspring gets half of their genetic information from their father and half from their mother.
- c. The dark MC1R allele is dominant to the light MC1R allele.
- **d.** Since offspring inherit DNA from their parents, if neither parent carried the dark MC1R allele, mutation in a parent's sex cell must have generated the allele.
- e. Mutation happens when errors are made in copying the DNA, sometimes as a result of environmental causes.

NAME _____

DATE _____

2. Complete the argument: Draw a line to match the evidence to the relevant reasoning.

Claim: A disease in rats is caused by having an allele of the C gene called C^2 .

EVIDENCE	(connect the dots)	REASONING	
No healthy rats have the C ² allele.	9	If a single copy of the C ² allele causes the disease, then diseased rats will always have at least one copy of the C ² allele.	
Every rat with the disease has at least one copy of the C ² allele.	0 0	If a single copy of the C ² allele causes the disease, then putting the C ² allele into rats with normal C alleles will give them the disease.	
When a C ² allele is put into rat embryos whose parents had only normal alleles of the C gene, the embryos have the disease when they grow up.	0 0	If a single copy of the C ² allele causes the disease, then healthy rats will never have the C ² allele.	

3. a. Use the information below to fill in the table.

Observation Some dogs have curly hair, and others have straight hair.

Question Does the K gene influence hair texture in dogs?

Claim Having at least one K^c allele causes curly hair in dogs.

(Check the appropriate box)		Does not support claim	
EVIDENCE	Supports claim	Not related to claim	Opposes claim
All dogs have two alleles of the K gene.		\checkmark	
All dogs with a K ^c allele have curly hair.	\checkmark		
No dogs with straight hair have a K ^c allele.	\checkmark		
Some dogs have wavy hair.		\checkmark	

b. For one piece of evidence that supports the claim, *provide the reasoning* that connects the evidence to the claim.

You may want to prompt your students to model their answers on the evidence in the table.

(All dogs with a K^c allele have curly hair) If having a K^c allele causes curly hair, then all dogs that have a K^c allele should have curly hair.

(No dogs with straight hair have a K^c allele)

If having a K^c allele causes curly hair, then no dogs that have a K^c allele should have straight hair.