Identifying Reasoning

Teacher key

1. Choose the best reasoning to complete the argument below.

Observation Two light tan mice had a baby mouse pup with dark brown fur.

Question How did light parents produce a pup with dark fur?

Claim In at least one of the parents’ gametes (reproductive cells), mutation of the MC1R gene generated a new allele that caused the mouse pup to have dark fur.

Evidence
- Genetic testing showed that the two light-colored mice are definitely the parents of the dark-colored pup.
- DNA sequencing revealed that the mouse pup has an allele of the MC1R gene that causes more black pigment to be made in the fur.
- Neither parent has a copy of this dark MC1R allele.

Which of the following statements provides the best reasoning to justify why the evidence supports the claim?

- **a.** Mutation is a natural process that generates genetic variation.
- **b.** DNA is passed from parents to offspring so that each offspring gets half of their genetic information from their father and half from their mother.
- **c.** The dark MC1R allele is dominant to the light MC1R allele.
- **d.** Since offspring inherit DNA from their parents, if neither parent carried the dark MC1R allele, mutation in a parent’s sex cell must have generated the allele.
- **e.** Mutation happens when errors are made in copying the DNA, sometimes as a result of environmental causes.
2. Complete the argument: Draw a line to match the evidence to the relevant reasoning.

Claim: A disease in rats is caused by having an allele of the C gene called C\(^2\).

<table>
<thead>
<tr>
<th>EVIDENCE</th>
<th>(connect the dots)</th>
<th>REASONING</th>
</tr>
</thead>
<tbody>
<tr>
<td>No healthy rats have the C(^2) allele.</td>
<td>![connection]</td>
<td>If a single copy of the C(^2) allele causes the disease, then diseased rats will always have at least one copy of the C(^2) allele.</td>
</tr>
<tr>
<td>Every rat with the disease has at least one copy of the C(^2) allele.</td>
<td>![connection]</td>
<td>If a single copy of the C(^2) allele causes the disease, then putting the C(^2) allele into rats with normal C alleles will give them the disease.</td>
</tr>
<tr>
<td>When a C(^2) allele is put into rat embryos whose parents had only normal alleles of the C gene, the embryos have the disease when they grow up.</td>
<td>![connection]</td>
<td>If a single copy of the C(^2) allele causes the disease, then healthy rats will never have the C(^2) allele.</td>
</tr>
</tbody>
</table>

3. a. Use the information below to fill in the table.

Observation Some dogs have curly hair, and others have straight hair.

Question Does the K gene influence hair texture in dogs?

Claim Having at least one K\(^C\) allele causes curly hair in dogs.

<table>
<thead>
<tr>
<th>EVIDENCE</th>
<th>Supports claim</th>
<th>Does not support claim</th>
<th>Opposes claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>All dogs have two alleles of the K gene.</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>All dogs with a K(^C) allele have curly hair.</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No dogs with straight hair have a K(^C) allele.</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some dogs have wavy hair.</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

b. For one piece of evidence that supports the claim, provide the reasoning that connects the evidence to the claim.

You may want to prompt your students to model their answers on the evidence in the table.

(All dogs with a K\(^C\) allele have curly hair)
If having a K\(^C\) allele causes curly hair, then all dogs that have a K\(^C\) allele should have curly hair.

(No dogs with straight hair have a K\(^C\) allele)
If having a K\(^C\) allele causes curly hair, then no dogs that have a K\(^C\) allele should have straight hair.