\qquad

Mutate a DNA Sequence

Student Instructions

Background

DNA replication happens whenever new cells are made, like during growth or wound healing. Although DNA replication is tightly regulated and remarkably accurate, errors do occur. These errors are called mutations-and when they happen in cells that give rise to eggs and sperm, they are a source of new genetic variations that can be passed on to offspring.

In this activity, you will use a paper model to make a mutation in a gene during DNA replication. Then you'll transcribe and translate the gene to see how the mutation affects the protein it codes for.

Prepare your materials

- Cut out the DNA, DNA COPY, mRNA, and PROTEIN strips.
- Cut out the Machines for TRANSCRIPTION, TRANSLATION (If you have done the Transcription and Translation activity, you'll already have these machines), and REPLICATION; cut along the dashed lines.

Replication: A molecular machine called DNA Polymerase attaches to DNA and makes a copy.

A cell does this:	Do this with your model:
1. DNA polymerase "un- zips" the double-strand- ed DNA, separating the complementary strands.	Cut the DNA strip along the dashed line, stopping at the gray bar.
2. The cell replicates both DNA strands at the same time, making two double-stranded copies.	You'll copy just one DNA strand (you may want to fold the other strand so it's out of the way). Line up the dark arrow on the DNA COPY strip with the light arrow on the STRAND TO COPY. Use tape to hold it in place.
3. DNA polymerase attaches to the DNA strand to be copied.	Slide the strips into the REP- LICATION Machine. Line up the DNA COPY strip with NEW STRAND, and STRAND TO COPY with OLD STRAND

\qquad

A cell does this:	Do this with your model:	
4. DNA Polymerase slides along the DNA strand, adding complementary building blocks to the DNA copy as it goes. \mathbf{G} pairs with \boldsymbol{C}, and A pairs with \boldsymbol{T}.	Write the first complimentary base on the DNA COPY strip.	
5. Sometimes DNA Polymerase makes a mistake. Most of the time, the cell fixes these mistakes. But when one remains, it is called a mutation.	As you fill in complementary bases, randomly make one of the following errors somewhere along your strip: Substitution: write in a base that doesn't match. Insertion: write in an extra base between two boxes. Deletion: write a "-" instead of the complementary base. Mark the mutation with a *.	

Transcription: RNA Polymerase attaches to a gene and makes an mRNA copy.

A cell does this:	Do this with your model:
6. Transcription machin- ery "unzips" the DNA, temporarily separating the complementary strands.	Turn so the DNA COPY is up- side-down. Line up the mRNA strip above it. Use a paperclip or tape to hold it in place.
7. RNA polymerase wraps around the DNA template strand.	Slide the strips into the TRAN- SCRIPTION machine. The DNA COPY is the Template Strand.
8. RNA polymerase reads the DNA template strand, adding building blocks to the mRNA strand accord- ing to the rules of comple- mentary base pairing: (RNA polymerase) base in the complimentary ing the machinery along the strips as you go. If you made an insertion, add its comple- mentary base. A deletion does not get a complementary base. (in DNA) pairs with \mathbf{C} (in RNA); \mathbf{C} pairs with \mathbf{G}; \mathbf{T} pairs with \mathbf{A}; \mathbf{A} pairs with \mathbf{U}.	
Mark the location of the muta-	
tion with a on the mRNA.	

\qquad

Translation: The ribosome reads the mRNA, putting amino acids together to make a protein.

To learn more about the gene you just mutated, read the Information Sheet. Compare your protein to the reference protein. What differences does your mutated protein have? What changes in the DNA sequence led to those differences?

Amino Acid Codon Chart

Circular Version

Amino Acid Codon Chart

Square Version

Second Letter

